
A Fermi National Accelerator Laboratory
m-383
2380.000

FERMIJAB'SADVANCED CWUl.E'RR& D PRCGRM?

'II-L- Nash, Stephen Bracker+, and Irwin Gaines

April 1983

*Invited paper to be published in the Proceedings of Three Day
In-Depth Review on the Impact of Specialized Processors in

+Elementary Particle Physics, Padova, Italy, March 23-25, 1983.
Bracker Research, Ltd., Toronto, Canada; on leave from the
University of Toronto.

e Operated by Universities Research Assoclatlon Inc. under contract with the United States Department of Energy

FERMILAB'S ADVANCED COMPUTER R & D PROGRAM

Thomas NaFh, Stephen Bracker+ and Irwin Gaines
l%&mni;atlonal Accelerator Laboratory

, IL 60510 USA

By any standards the analysis computing requirements of Tevatron

fixed target and colliding beam experiments at Fermilab will be huge.

Table I shows some early predictions'; many of these are likely

underestimates because they assume large improvements over existing

algorithms. This experimental load will have to share facilities with

lattice gauge calculations, a very important theoretical subject

stirring much interest at Fermilab.

Fermilab's response to this problem is on two fronts. A "Request

for Proposals' has been released for a $5 million acquisition (by

lease) intended to at least double the present capacity of the

Computer Center's three CDC Cyber 175s. The schedule of this
competition projects to a delivery at the end of 3.983.

The second response to the computing problem is based on the

recognition that commercial solutions do not appear likely to meet the

full requirements of high energy physics over the next decade. An

effort aimed at confronting these computing bound problems of high

energy physics has been organized at Fermilab and named the Advanced
Computer R & D Program (ACP). The intention is to create a

stimulating atmosphere in computer research and development in which

new approaches to computer design will flourish. Interactions outside

high energy physics with computer scientists from industry and

universities are strongly encouraged. Particularly successful has
been a seminar series held over the past year. This has brought to

Fermilab a very distinguished list of specialists (see Table II)

covering many diverse aspects of computer science activities in the

U.S. There has been a very useful two way communication both during

and after these visits.

We hope that the ACP will ultimately act as an umbrella program
covering several simultaneous projects. During the first period,

however, there will be a single focus. As an R & D effort, the

program has no immediate operational responsibilities. Therefore,

though well supported, it has intentionally been made organizationally

independent of Fermilab's Computer Department. On the other hand, the

computing requirements for Tevatron experiments cited earlier make

clear what direction the first efforts should take, namely the

development of a reconstruction processor. Building on the foundation

of personnel, equipment and module designs established by the first

project will be, we expect, a subsequent effort aimed at the lattice

gauge problem. Typical of the type of research we would like to

pursue in the future is work on large data base technology allowing

for fast analysis histogramming at convenient work stations.

in the rest of this paper, we will describe the ongoing work on

the reconstruction processor project much of which presently is

focused on the conceptual design. Previous experience with several

earlier processor systems by people associated with the project is

influencing present thinking. TWO of these earlier systems were

developed at Fermilab and have been described in detail elsewhere*.

The M7 Processor was designed in 1977 by T. Droege, I. Gaines,

D. Harding and K. Turner for use in triggers on experiments in the

broad band photon beam. This is a fast cycle (110 nsec), streamlined,

stored program computer with a specialized instruction set. These

microprogrammed instructions are of the form Ek = Ai * B * Cj * D

(where the f may be any ALU operation). This was based on the very

important understanding that (at least for most fixed target

experiments) the innermost loops of track reconstruction programs are

dominated by linear operations of that kind. Although originally

intended for triggers and not FORTRAN programmed, the Ml is now being

prepared for interspill and offline computation.

The ECL-CAMAC Trigger Processor system, designed in 1978

principally by E. BarSOtti, S. Bracker and T. Nash, is modular and

data driven and capable of extremely high speed computations involving

-2-

loops and subroutines. It is programmed primarily by the way modules

are interconnected - though FORTRAN is used to program memory (table)

look up units. Decidedly non-Von Neumann operations lead to

tremendous operational. cost effectiveness. These include a 120 ns per

loop line finder that uses projections to a bit list and the table

look ups. An algorithm that required an average 7 usec on a $lOOK

trigger system needed -40 msec on a Cyber 175. This power comes at

the cost of inflexibility and difficulty in programming.

There has also been some experience with two important systems

developed outside of Fermilab but in use for Fermilab experiments.

These are the Nevis Data Driven Trigger Processor (designed by

B. Knapp and W. sippach) and the SLAC 168~ emulator (P. Kunz).

Our basic goal in designing a new reconstruction processor is to

obtain as much as possible of the power of the data driven processors

in a system at least as programmable and flexible as the emulators.

At first, to meet the fundamental needs of the Tevatron experiments we

need to reach a cost effectiveness (units of equivalent megaflops/mega

$ are appropriate) 100x that of the Cyber 175. This recognizes that

such a system can not replace the services of a computer center. Thus

typically amounts of money representing only 10% of the computer

center value will be available to fund a system - aimed to be 10x the

computer center processing capability - to handle the most time
consuming problems. Such a system must be comfortable for physicists

to use and program and be flexible. This means a very friendly host

system with excellent software development tools either on the host or

at the computer center. After much debate we are convinced that we

must provide FORTRAN (with extensions likely) as the first priority

language. Some other more modern alternative languages should also be

available.

We have just described what are essentially minimum goals.

Regrettably, for an R & D program, these are almost operational in

nature. Our real goals - and interest - are to get as much processing

power as we can (another 10x-100x) and still have a friendly,

-3-

programmable system. Why provide more than "needed"? First of all,
we are convinced that the present projections of needs are, as is

usually the case, underestimates. The minimum goals will, we suspect,

barely meet demands and then only in a near saturated environment.

The real motivation is to remove computing restrictions as much as

possible from physics choices. The type of experiment and detector

chosen or a decision to rerun a major reconstruction for better

resolution, for example, should be decisions based on physics

considerations not computer turn around time. Most importantly,

human, not computer, limitations should dominate the time required to

iterate physics. Physicists spend far too much of their time

shepherding production jobs or waiting on computers to turn around

physics ideas. Major improvement in this area will affect directly

the productivity of physicists and physics installation.

Our design approach is to combine the power of specialized

devices (like those used in data driven triggers) with the

programmability of 16/32 bit microprocessors or small computers that

are supported with good FORTRAN compilers. The system will be very

modular in concept to allow for optimizing architecture - maximizing

hardware utilization - for different classes of (and specific)

problems. This includes the possibility of an array interconnection

of processor nodes for lattice gauge calculations' as well the stream

independent multiprocessing approach natural for event reconstruction

which we will describe below. Modularity is also of great value in

allowing systematic debugging of complex systems. The planned 3081E

processors with a l.arge improvement in modularity over their 168E

predecessors demonstrates that this lesson has been learned in the

high energy physics community4.

Our staged plans for developing a powerful multiprocessing system

are encouraged by four important characteristics of events

reconstruction algorithms. Four levels of system concepts with

increasing complexity are indicated in Figures l-3. Each demonstrates

one of the characteristics:

-4-

Events are independent of each other. This allows large numbers

of small, highly cost effective processor nodes to compute on single

events independently - without the complexity of inter node

communication (Figure 1). Event processing time is long enough and

event lengths short enough so that bus communication at the input and

output will not be a practical problem for this type of system. We

estimate the limitation to be upwards of 100 nodes for typical event

reconstruction with bus loads comfortably within the capability of

Fastbus but near the maximum data rate of a single 6250 bpi tape

drive.

The problem breaks easily into major serial subroutines. These -
subroutines, usually written by different groups of people, carry out

the reconstruction of different detectors or classes of data. This

naturally suggests the Level 2 structure of several ranks of nodes

(Figure 2). The number of nodes in each rank is adjusted to balance

the system for a particular program and avoid bottlenecks. Events

streaming from rank to rank are assigned to any available node.

Arbitration is trivial in the switches which are really busses since

the throughput is such that only one event need be handled at a time

and there are no constraints on the choice of node since each has the

same program load and hardware.

There exists a kernel of basic instruction sequences that ____-
dominate the computing time. This means that special purpose devices ----
- which we call coprocessors - may be brought to bear effectively on

the computing intensive kernels of the reconstruction algorithm.

These coprocessors are more powerful than what is usually meant by the

word when referring to floating point coprocessors. In fact they are

special purpose hardware that will often use the non-Von Neumann

techniques such as projections to hit arrays of the data driven

triggers to find, match and fit tracks. Special SU(3) multiplier

coprocessors will be very useful for the lattice gauge problems.

Operating with very high cost effectiveness, they will take control

from the primary processor on an extended FORTRAN instruction Similar

to a subroutine call for a restricted list of names, such as CALL LINE

-5-

(.I...). These "hardware subroutines" will be documented well
and their use, from a programming point of view, will be similar to

calling a CERNLIB subroutine. The multiple ranks of the Level 2

concepts have their primary advantage when coprocessors are added

(Level 3, Figure 2). Coprocessors of a particular type are only

installed on ranks where they are required. The multiple ranks allows

optimizing hardware utilization of the coprocessors. We will return

to a more detailed discussion of coprocessors later.

There is intrinsic parallelism within an ev_G An example of

this is the possibility of reconstructing line segments in several

parts of a detector simultaneously before linking them. rJse of such a

Level 4 concept (Figure 3) may ultimately be valuable for optimizing

coprocessor use. Other sophisticated approaches such as sharing

processor/coprocessor teams between two events are also of imaginable

benefit but are not shown in Figure 3. These kind of advanced and

complex strategies for extracting the last factor of two in cost

effectiveness will be avoided for some time in our project because of

the desireability of maintaining simplicity in the design.

At this time our primary efforts are aimed at selection of an

appropriate processor - compiler combination in the context of the

Level 1 concept (Figure 1). This type of system, should with a

straight forward design, reach a cost effectiveness -100 x Cyber 175

in terms of real physics code. AS noted earlier the processor cost

effectiveness of good microprocessors is very high and memory at

appropriate speeds is cheap enough to contain whole programs

generously without adversely effecting the cost effectiveness. In

fact the large majority of processors we are considering have address

spaces larger than the Cybers.

The important factor is turning out to be the quality of FORTRAN

compilers that are available. The microprocessor compiler situation

is improving rapidly. We are bench marking compiler-processor

combinations using a reconstruction package from a typical large

Fermilab experiment (~87-400).

-6-

There appears to be essentially three catagories of processors in

our considerations. These are: a) Easily available, continuously

developing families of processors such as the Motorola 68000 and

descendents and the Intel 8086 and its descendents. The quality of

FORTRAN compilers for such systems is a key issue in our testing. b)

Super powerful chip sets associated with available or potential small

computers such as the "VAX on a chip" and the HP9000. These are well

supported with software but unavailable as chips, apparently because

of marketing considerations. A research agreement motivated by some

of the novel approaches we are planning to take may hopefully, if

appropriate, make such chips available for our research efforts. c)
Full small computers, the 3081E for example, may be appropriate for

our purposes. However, the scale of multiprocessing would change and

it is not clear how much could be gained with coprocessors with such

large and expensive primary nodes.

An indication of the comparison criteria we are using is shown in

Table III. A large list of possible candidates, not all of which will

be under detailed consideration, is in Table IV. We expect that after

a somewhat quantitative comparison we will have several reasonably

acceptable possibilities. The final selection will be based on some

of the more subjective criteria having to do with the host system and

the availability of a research agreement.

We have already referred to specialized coprocessors that take

control from the primary processors for time consuming inner loops.

This is the only approach we are aware of that allows a substantial

jump in cost effectiveness beyond the typical level obtainable with

microprocessor or emulator multi processing. The figure of merit in

using coprocessors, the relative improvement in cost effectiveness is

M= RC
(1 - f + f/s)

Here f iS the fraction of time spent in coprocessor code when

operating without coprocessors, s is the speedup of coprocessor

operations relative to that of the primary processor node alone, and

-7-

RC is the ratio of the cost of a node without to that with
coprocessors.

It is clear from this formula that there is an important premium

in getting f as large as possible. For s large and Rc = 1, the case

of high speed cheap coprocessors, MC 1
l-f'

To get an improvement of a

factor of 10, fz.9. This means that the coprocessors' capability must

span a very large fraction of the time consuming algorithm kernels.

IS it possible to select a class of operations, and design appropriate

coprocessors, that have f>.9?

To answer this question we have started a detailed study of the

structure of reconstruction programs. The results from this study

have already proven to be interesting. It appears that the creation

and manipulation of lists is by far the most important activity in

reconstruction algorithms. It was necessary to develop our own basic

notation for such list manipulations. On hearing this described,

David Kuck pointed out to us that there is a great similarity in the

manipulation operations used in high energy physics to the relational

algebra of the computer science research on relational data bases.

This very active subject (with its own journal) is considered to be

potentially of great importance to many business applications, such as

airline reservations, that involve large data bases.

In the following we will describe the list structures and

manipulations that appear to cover a very large fraction of

reconstruction algorithms. It must be emphasized that our study is

still very preliminary. It is based on a detailed examination of the

largest code at Fermilab (E516) as well as a less detailed

understanding of the algorithms of several other fixed target

programs. A planned further study of non-Fermilab and non-fixed

target algorithms is not likely to result in a large change in our

conclusions, though we can't be certain of this yet. In our

description we will use words that are most relevent to the

physicist's image of what is going on. These differ from the language

and terms of relational data bases which we will indicate in

-8-

parenthesis using the nomenclature in a manual for a relational data
base management system available at Fermilab'.

A list (relation) consists of some number of named columns

(attributes) each containing data (attribute values) of a particular

type (Figure 4). Each row of the list contains a set of data such as

the hit coordinates of a specific track. There is a unique index for

the list which is usually implicit like that of a FORTRAN array though

it may be related to a particular column (key attribute).

Starting with a set of independent wire chamber coordinate hit

lists as indicated in Figure 5, a reconstruction algorithm works

through a sucession of shorter and wider lists (containing track

segments, for example) until it obtains the final list containing for

each track a row with parameters and the hits that have been

identified for the track. At each stage the algorithm is trying to

find elements of the lists (such as hits) that it can associate and

Put into single rows of related elements (such as regional track

segments) of the next level of list.

It is important to emphasize that these list structures are not

representative of how data is actually stored in memory in programs.

Pointers are often used to relate (this word appears frequently) data

in one list to that in another rather than creating more and more real

lists in memory. These list structures and the manipulations

represent conceptually what is going on in the algorithms. An

understanding of these conceptual structures of reconstruction

algorithms iS the first step in defining appropriate specialized

hardware coprocessors to carry out these operations in non-Von Neumann

architecture.

A limited set of simple and more sophisticated list operations

(modification commands and relational algebra operations) is used to

build toward the final list. The more simple operations (Figure 6)

consists of combining or contracting lists by appending or deleting by

rows or columns. (Deleting by columns is called projection in

-9 -

relational algebra). Also shown in Figure 6 is another operation Of

conceptual importance in building the more complex projection operator

to be described below although it does not appear to be used by

itself. This is the "product" (X*Y) of two lists created by a double

index DO loop over the indices of the two lists.

The most important operation for reconstruction is what we call a

projection (not the relational algebra projection). Projections are -
list operations that relate two lists, X and Y, to create a new list,

zr from selected combinations of rows of X and Y. The selection of

rows from X*Y is determined by a projection function. The selection

is made by finding those rows of Y for which stated elements fall,

within specified ranges, of functions of a single row of X. In the

simple projection shown in Figure 7 a single projection is made from X

to Y. The nomenclature derives from the common usage where, for

example, track segments in one region (X) are projected into a chamber

hit list or a track segment list (Y) in another region to produce a

track list (Z). In many situations, as when a track segment list is

projected into a number of chamber hit lists, several projections are

coupled. A predefined number of individual projection functions (say

3 out of 5) is required to be satisfied for the coupled projection to

succeed and a new row (track) added to z (the track list).

The projection function contains much of the diversity required

by differing experiment geometries and algorithms. AS such, any

specialized hardware handling projection functions must be readily

programmable. At the same time much emphasis must be placed on

optimizing the cost effectiveness and, probably, the speed of

projection function hardware since they represent the innermost loops.

It appears that, at least in the Fermilab fixed target environment,

all projection functions are linear involving sums (or compares)

between multiplications. This was the structure first emphasized in

the context of the M7 instruction set. At other laboratories in

experiments with cylindrical geometries, there appears to be a heavy

use of trigonometric functions. We suspect that most of these cases

will allow a linearization of the projections. If not, one will have

to admit sin and cos operations into projection hardware.

-IO-

The maximum number of multiplications and additions (or other ALU

operations) that we have seen so far to carry out the most complex

projection functions in parallel is l.ess than 12 of each. (Detailed

cost effectiveness studies that involve balancing the speeds of

coprocessors and their processor nodes are required to determine

whether, optimally, the projection function operations should be done

in parallel or folded through a smaller number of operations.) It is

interesting that the SU(3) multiplication that consumes so much time

in lattice gauge calculations is made up of 9 * (12 multiplies and 6

adds). Hardware that is optimized for linear projection functions,

therefore, looks like it will fit the SU(3) problem in a very natural

way.

The study of the structure of reconstruction algorithms allows us

to make a preliminary catalogue of the basic coprocessors required.

These are:

1. List indexer and element selector. This basic unit controls

looping, handles relational algebra involving the conceptual
moving of rows and columns, and controls projection indexing.

2. Linear projection function. Called by the coprocessor

described above, this device computes projection functions.

As noted earlier these functions are primarily linear in form

and may be built of a number of parallel multipliers followed

by arithmetic logic units (ALUs) to carry out additions and

comparison operations. A set of microprogrammed multipliers

and ALUs is a natural way to obtain the flexibility and speed

so important here. The microprogramming would be compiled

directly from user provided FORTRAN projection functions.

Folding - that is reducing parallelism by looping results

back through the same circuits - may be used to match the

cost and speed of this unit to memory and the main processor.

If trigonometric functions turn out in fact to be required,

they can be added in parallel to the multipliers as look up

tables in fast memory or using commercially available

-ll-

floating point/trig function coprocessors expected to be

available soon.

3. Binary search and ordering. Also called by the first

coprocessor, this may be required for cases where projections

to hit arrays (bit lists) cannot be used because of memory

considerations. The most effective way to carry out

projections is to a hit array where each location in the

array indicates the presence or absence of a hit within the

appropriate projection resolution. In this case the

projection function simply computes the address in the hit

array and looks. For high resolution or long dimensioned

projections the amount of memory required for the hit array

is prohibitive. It might be possible to break up the

projection into a series of increasing resolution steps to

reduce the memory required. If such an approach cannot

generally be applied in a cost effective manner, it will be

necessary to carry out projection searches through whole

lists scanning for matches. A coprocessor that does binary

searches, the optimal way to do this, is then required.

Lists must be ordered for a binary search to succeed and

ordering hardware must therefore be provided.

4. Calibrator and list builder. Raw data entering programs must

be calibrated and mapped to a standardized format in the

special list memory that is used by the coprocessors. In

hardware this operation can be described as nothing more than

a smart DMA (Direct Memory Access) controller. In some

programs the equivalent activity takes 20% or more of the

required computer time. Conceptually this unit unpacks data

from input common blocks (buffers) putting data into working

variables. After processing it transfers results into packed

output common blocks (buffers).

5. Fitter. Least squares linear fits are an essential part of

all reconstructions both during pattern recognition and in

-12-

determining final physics parameters. An interesting and

very powerful fitter has been designed by Knapp and Sippach

for their data driven trigger system using bit serial

moduless. We are far from understanding whether such a

completely pipelined system can be effectively mated to the

coprocessor approach without changing module connections for

each use. If possible, however, the Knapp-Sippach fitter

would be very desireable because it probably comes close to

the limit of cost effectiveness obtainable with a hardware

fitter.

It is likely that the list memory accessed by the coprocessors

will have to be reasonably fast although final design optimization may

point to slow list memory that is identical to the data memory of the

primary processors. How big will this possibly fast cache memory have

to be for each event? A detailed specification reguired for the

largest active Fermilab code requires a total of 37,600 16 bit words.

Even using the most expensive high speed bipolar memory, list memories

of up to 64K words will cost under $2000 and appear reasonably matched

to a likely scale of costs for primary and coprocessors.

It has been pointed out how important it is for the coprocessors

to cover a very large fraction of the time spent in reconstruction

processing. We have carefully timed the various parts of the big

program used for this first study. In this case the event time is

spent as follows:

1. Setup and calibration. 2. %

2. List manipulations, projections, etc 74.6%

3. Fitting 15. %

Total available to preliminary 91.6%
list of coprocessors

4. Track Selection 7.1%

5. Miscellaneous 0.7%

100. %

The potential speedup with our list of coprocessors is therefore -12x.

Track selection involves discarding ghost and other spurious tracks in

-13-

a systematic fashion using defined criteria. If this activity can be

sufficiently generalized to put in coprocessors, the potential speedup

becomes still larger. Our plan is to document the preliminary

specifications for coprocessors. After circulating them to potential

fixed target and colliding beam users, we will learn better what is

required in final designs.

We have several times alluded to the need for balancing the speed

and cost of the various parts of the system. Equation (1) for the

relative increase, M, in cost effectiveness provided by a given

coprocessor system is rigorous and a fundamental constraint on design.

Design decisions come down to a good understanding of the relationship

between R,, the relative cost with and without coprocessors, and S,
the speedup due to the coprocessors. These numbers depend critically

on the speed of the primary processor node. For a faster node, it is

obviously more expensive to obtain the same speedup, S. But a faster

node is itself more expensive and R, may end up smaller for a given S.
In choosing from available design strategies it is therefore clear

that one must optimize the overall system figure of merit which is the

system cost effectiveness, Csystem=M Cnode. Determining cost versus

speed relationships for processors, commercial and custom integrated

circuits, and, particularly, for memory is as difficult as it is

important. New technologies that open up, the state of the economy,

and the politics of foreign trade all have effects on projections on

the scale of one and more years in advance that are required for a

project like ours.

Several approaches that we have referred to before can be used to

optimize hardware utilization. The vertical segmentation into SeVerJ.1

ranks of processors (Level 2) allows for smaller program and data

memories at each node and for more efficient use of coprocessors.

Operating within events in parallel on more than one

processor/coprocessor system is a sophisticated - and difficult -

possible strategy. Far Simpler in terms Of synchronization is the

idea of operating on 2 events simultaneously in one

processor/coprocessor system. One event takes precedence and i s

-14-

processed in either the primary or coprocessor at any moment and the
other event is used as a filler in the otherwise idling hardware. In

ideal situations, though additional memory and registers are required,

such an approach can give in principle up to an additional factor of 2

over the basic formula for M of Equation 1. We do not, of course,

intend to apply such sophistications until a reliable and stable basic

system has been established.

At this stage of the project, we have built up a reasonable and

potent repertoire of interesting design strategies. Over the next 6

months the major emphasis will be on measuring and projecting cost

versus speed relationships in order to select as best we can, the

optimum hardware and design combinations. One aspect of this effort

is the ongoing study that will lead to a choice of processor for the

primary node and then, as soon as possible, to a first prototype. The

other immediate task is to understand projection of memory and VLSI

costs for the different available technologies. With the work going

on in parallel into coprocessor specification, the project should in

half a year be in a good position to produce a powerful and effective

system.

Acknowledgements

A number of people were involved in a series of working sessions

that established the direction of this project. They include:

M. Johnson, D. Kaplan, R. Raja, J. Slaughter and H. Thacker. We have

also had useful conversations with A. Brenner. The two new members of

the ACP group, H. Areti and M. Fischler, as well as E. Barsotti, have

made important contributions in recent discussions. David Bintinger

wrote the extremely organized code for ES16 that (once he provided

comments) allowed us to identify lists and list manipulations as the

primary activity of such reconstruction programs. We also thank David

Kuck for pointing out the similarity of the list manipulations we

identified with those of relational data bases. Finally we thank Leon
Lederman for his strong support. His idea of starting a seminar

series has proven to be very valuable in establishing communication

between the worlds of high energy physics and computer science.

-15-

FOOTNOTES AND REFERENCES

+

1.

2.

3.

4.

5.

6.

Bracker Research, Ltd, Toronto, Canada; on leave from
Univ. of Toronto

Prepared for an early evaluation of the need for a research
and development effort in computers, "A Program for Advanced
Electronics Projects at Fermilab", Thomas Nash, May 1982.

See "A Review of Programmable Systems Associated with
Fermilab Experiments," invited paper, T. Nash, proceedings,
Topical Conference on the Application of Microprocessors to
High-Energy Physics Experiments, CERN, Geneva, 4-6 May 1981.
(CERN 81-07) and references contained therein.

G.C. Fox "Construction and Use of a Homogeneous Machine
Scientific Problems"; A. Terrano,

for
"Lattice Gauge Theories and

Special Purpose Computers", papers presented to this
conference, elsewhere in these proceedings.

P. Kunz, "The 3881/E Processor', paper presented to this
conference, elsewhere in these proceedings.

F.P. Gray and S.O. Wahlstrom, User Guide: RIM 5.0, Boeing
Commercial Aircraft Co, Seattle (1982); J. Ingebretsen, IJse
of RTI/RIM-Test Version, Fermilab (1983).

W. Sippach, private communication.

-16-

z
2
z
ti
:
2
I
f-4
al
ii
2

2 m

z 2 a
m mm?,m
,.+ooA

OONCUlD
,,.-4,-4:,

0 In m 0 .o:, mcur-4

00000 000
00000 000
00000 000
sI:ssI=:

loam
74urv-l

NuJDrl0u-l mmmo3co
UlcnmoIm
r(rlrlr(rl

!
or-au)
Oco~r-
~IDlnlnh
AAAAE3

.

r-ml--
rnOvl
v)PIn
AAil

f m
IT cs

f an
om
N ri

0 0
0 0

:::
N -3

22

22

NW

&c:

AA

. ‘ow
2 5.32 Pi= GE ii: 0”

~ $2:
. .

:
‘; z flJz zz: z3

z
2 u

u=z =a z”

-17-

Table II
Speakers at Advanced Computer Seminar Series

H.D. Kung Carnegie Mellon

C. Maples LBL

J. Schwartz NYU

J. Dennis MIT

W. Sippach Columbia

D. Kuck Illinois

B. Smith Denelcor, Inc.

H. Walsch & F. Ris IBM

J. Abraham Illinois

G. Fox Cal Tech

Systolic arrays

"Midas" multiproc. system

Ultra computer

Data flow computers

Data driven system

Super computer compilers

Design of the HEP

Scientific computers

VSLI design

Microprocessor arrays for
physics

-18-

Table III
Comparison Criteria for ACP Processor Comparison Study

$ for CPU, 100 Qty, plus real estate
$ for 1 Mb memory, 100 Qty

Cycle time
Fixed point operation speed
Floating point operation speed
Physics bench mark

16 bits or 32 bits
Address space
Hardware memory plateaus - increments of memory
Virtual memory in hardware?

Existing Compilers?
Ease of use
Improvability

Upward compatibility of hardware

Ease Of "coprocessor" interface
calls
memory transfer

Development costs
Development systems, software
Compiler

49 -

* CDC
* DEC

* SLAC
* SLAC/CERN
* Motorola

* Intel

Table Iv
List of Processors for ACP Comparison Study

Cyber 175
VAX 11-780

+ array processor

168~
3081E
68000 and descendents

* National Semi

* HP
* DEC
* DEC

UNova
TI

Zilog
Intel
Commodore
Bell Labs
IBM

Various

8086 and descendents

16032

9000 32 bit chip set
PJll
VAX chip

99000

28000
IAPX 432
65000
Bellmac - 32
?

Small computer boards

* Benchmark activity actively being
pursued on these processors.

-2o-

FIGURE CAPTIONS

1. Level 1 multiprocessor concept.

2. Level 2 (and 3) multiprocessor concepts.

3. Level 4 multiprocessor concept.

4. A list (or relation) shown schematically.

5. Schematic view of list development in a typical track
reconstruction program.

6. Simple list operations (modification and relational algebra
operations shown schematically.

7. Simple projection operation shown schematically with a
typical example of its use.

-21-

Level 1:

oat9 from hwt (*wnt by eventl

Fmc.-

output tam

Flgure 1

Figure 2

Level 2:

map* 2
12 no*.*

saw 3
1 node

1 12 x ,a -witch 1

I

I
Chuwd hck Charged track Charged back . . .

mm pmwn

I
L

I
10 x 10 awItch

III 1111

,,I I ,,I

Level 3:
Add CO,,,OC...O” to l.vd 2 . . needed.

12 x 10 .Wkh

Ch.,ged ‘mck

adYnb

Cerenkov cwnhr

mdYd8

0s
x-
EX
be .-
:s

iif oc

/

QQ
< m

Y LL

i ;i

zl

if 0
0 0

a- -
1 eg c

.

.

.

1 AA

c

i! 4

i

c
: a

0

-

3

u--It

i
I? il :a

: r

c%zmn
(Subhst)
names ----

LIST NAME
A 8 C D E F

aaa bbbb cc ddd eeee
aaa bbbb cc ddd eeee
aaa bbbb cc ddd eeee
aaa bbbb cc ddd eeee
aaa bbbb cc ddd eeee
ma bbbb cc ddd eeee fff
aaa bbbb cc ddd eeee fff
aaa bbbb cc ddd fff
aaa bbbb cc ddd fff

bbbb cc ddd fff
bbbb ddd fff

ddd fff
ddd fff
ddd fff

Columns

I
r
2
3
4
5
6

87

190

ii
13
14

r-Lis

index

Figure 4

wIc
III I
IllI
III1
III1
III I
III I
III I
Ill1
III I
Ill1
Ill1
III I
1111
Ill1
-

LIST MANIPULATION IN TYPICAL TRACK
PATTERN RECOGNITION ALGORITHM

w2c
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

/
::

w3c
3333
3333
3333
3333
3333
3333
3333
3333
3333
3333
3333
3333
3333
3333

t..

-

WC
n -

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
“““”
nnnn
“““”
“““”
“““”
“““”
nnnn
nnnn

WIRE CHAMBER
COORDINATE LISTS

I r PREMAGNET SEGMENT

x0 Ye x’o Yb I/P x, Y. WC w,c w,c w,c w,c w,c
I c J I ” ”

xxxx yyyy ix’x’ Y’Y’Y’ PPPP x,x, y,y, I I I I 2222 3333 4444 5555 6666

xxxx yyyy x’x’x’ Y’U’Y’ PPPP x,x, y,y, I I I I 2222 3333 4444 5555 6666

xxxx yyyy x’ix’ Y’Y’Y’ PPPP x,x, y,y, I I I I 2222 3333 4444 5555 6666

xxxx yyyy llxlx’ Y’Y’Y’ PPPP x,x, y, y, I I I I 2222 3333 4444 5555 6666

FINALS
Tp,&F

Flgure 6

SIMPLE LIST OPERATIONS USED
IN RECONSTRUCTION ALGORITHMS

abc
abc L abc
abc

T-L
2
2
de
de
-

Appending
by

Columns

Deleting
Columns

abcde
a bcde
abcde
abcde

de
de
de

Appending

Deleting Rows 1 ::::g

X Y

XI XI XI YI YI
x2 x2 x2 Y2 Y2

ca

x3 x3 x3 Y3 Y3
x4 x4 x4

\

,‘$:;;,.
,,~~~

of lists

2 index DO loop

X*Y

XI XI XI YI YI
XI XI XI Y2Y2
XI XI XI Y3Y3
x2 x2 X2YI YI
x2 x2 x2 Y2 Y2
X2X2X2Y3Y3
X3X3X3YlYl
X3X3X3Y2Y2
X3X3XJY3Y3
X4X4X4YI YI
x4 x4 x4 Y2 Y2
X4X4X4Y3Y3

--- NNNFJmKJ*b*
xxxxxxxxxxxx
-- -NNNP713)3W*bW
xxxxxxxxxxxx

-NNN13P)l+)WbO
~xxxxxxxxxxx

A

X

-Nrc)W
xxxx

;;E!ES

XEZ::

>

X

E .- s t .-
I: aa- I/i ii- .:::

4-

‘0' :x// .ii::: .::::: &I? ,,j/j/jj _:/jj///ji .d$gj!j .!/ij/j//jjii; .:/::rgziii 0:::::. ., :iijjii(::::::: ;jEii: ::::i.

1

::::. .::: :::
2-

gzz
-asY

zc3=
gk!

s 05,
St?-
&n ifI
3 -3
L&i
-ris a$

